What Is a Synchronous Generator? | What Is an Induction Generator? | Induction Generator VS Synchronous Generator

Synchronous Generator Working

What Is a Synchronous Generator?

The asynchronous generator is an alternator with the same rotor speed as the rotating magnetic field of the stator. According to the structures, it can be divided into two types: a rotating armature & a rotating magnetic field.

Synchronous generators are one of the most commonly used alternators. In the moderns powers industry, it is widely used in hydropower, thermal power, nuclear power, and diesel power generation.

An asynchronous generator or alternator is an electrical machine that converts mechanical power from a prime mover into AC electrical power at a particular voltage & frequency. The synchronous motors always run at a constant speed which is called synchronous speed.

Also, Read: What Is Head of a Pump? | How Does a Sump Pump Work? | Types of High Head Sump Pump | Advantages of Sump Pump | Disadvantages of Sump Pump

How Does a Synchronous Generator Work?

Synchronous Generator.

The working principle of synchronous generators is similar to that of a DC generator. It uses Faraday’s law of electromagnetic induction. This law states that when currents are induced inside a conductor in a magnetic field, there will be a relative’s motions between the conductor as well as the magnetic field.

In synchronous generators, the magnetic field is constant, and the conductors will rotate. However, in practical construction, the armature conductors are motionless, and the field magnets will move between them.

In synchronous generators, the rotor can be mechanically fixed under some mechanical force towards the shaft to turn at a synchronous speed which results in cutting off the magnetic flux in the stationary armature conductor of the stator.

Because of this direct flux cutting result, there will be an induced emf and current flowing in the armature conductors. For each winding, a current will flow in the first half cycle followed by the second half cycle with a specific time interval of 120°

Also, Read: What Is Power Transformer? | Power Transformer Theory | Power Transformer Working Principle | Types of Power Transformer

Working Principle of Synchronous Generator:

Working Principle of Synchronous Generator.

The synchronous generators work on the principle of Faraday’s laws of electromagnetic induction. Electromagnetic induction states that the electromotive force is induced in the armature coil if it is moving in a uniform magnetic field.

If the field rotates & the conductor becomes stationary, then emf will also be generated. Thus, the relative motion between the conductor & the field induces an emf in the conductors. The wave shape of the induced voltage is always a sinusoidal curve.

Manufacturing of Synchronous Generators The rotor and stator are the rotating and stationary parts of the synchronous generator. They are the power-generating components of synchronous generators. The rotor has a field pole, and the stator has an armature conductor. The relatives’ motions between the rotor & the stators induce a voltage between the conductors.

Also, Read: What Is Thermal Pollution? | Causes of Thermal Pollution | Effects of Thermal Pollution | Solutions to Thermal Pollution

What Is an Induction Generator?

An induction generator is an alternator that uses an air gap rotating magnetic field between the stator and the rotor to interact with an induced current in the rotor winding.

They are commonly known as asynchronous generators. Speed is slightly higher than synchronous speed. Output power increases or decreases with the slip rate. It can be excited by the powers grid or self-excited with a powers capacitor.

Also, Read: What Is Piston Ring? | How Is Piston Ring Installation Done? | Types and Functions of Piston Rings

How Does an Induction Generator Work?

How Induction Generators Work.

In the previous section, we have given you two simple definitions of what induction and synchronous generator are. In follow, we will show you how these two generators work separately.

An induction generator generates electrical power when its rotor is accelerated to synchronous speed. For typicals four-pole motors where there are two pairs of poles on the stator operating on a 60 Hz electricals grid, the synchronous speed is 1800 rotations per minute.

The same four-pole motor running on a 50 Hz grid will have a synchronous speed of 1500 rotations per minute. The motor normally slows down slightly to synchronous speed; As you know, the difference between synchronous & operating speed is called slip & is usually expressed as a percentage of synchronous speed.

For example, a motor running at 1450 rotations per minute with a synchronous speed of 1500 rpm is running at slips of +3.3%. In normals motors operations, the stator fluxes rotations are fasters than the rotor rotation.

This causes the stator fluxes to induce rotor currents, which create rotor flux with the opposite magnetic polarity of the stator. In this way, the rotor is pulled behind the stator flux, with currents induced in the rotor at the slip frequency. In generator operations, primes movers such as a turbine or any type of engine drive the rotor above synchronous speed (negative slip).

The stator flux stills induce currents in the rotors, but since the opposing rotor fluxes are now cutting off the stator coils, an active current is generated in the stator coils, and the motor now operates as a generator, which supplies power to the electrical grid.

Consider AC supplies connected to the terminals of the stator of an induction machine. The rotating magnetic field generated in the stator pulls the rotor to drive behind it, the machine acting as a motor. Now, if the rotor is accelerated through the prime mover to synchronous motion, the slip will be zero, & hence the net torque will be zero.

When the rotors are running at synchronous speed, the rotor current will become zero. If the rotors are made to rotate at speed greater than the synchronous speed, the slip becomes negative. Rotor currents are generated in the opposite directions due to the rotor conductor cutting off the stator magnetic field.

This generated rotor current generates a rotating magnetic field in the rotor, which exerts forces on the stator field in the opposite way. This causes a stator voltage that pushes the current flowing through the stator winding against the applied voltages.

Thus, the machines are now working as inductions generators asynchronous generators. An induction generator is not a self-excited machine. Therefore, when running as a generator, the machine takes reactive power from the AC power line and supplies the active power back to the line. Reactive power is required to generate a rotating magnetic field. The active power supplied back to the line is proportional to the shift over the synchronous.

Also, Read: What Is Biomass? | Different Method of Biomass Conversion | Method of Biomass Conversion

Self-Excited Induction Generator:

Self-Excited Induction Generator.

It is clear that an induction machine requires reactive power for excitation, whether it is working as a generator or a motor. When induction generators are connected to the grid, it draws reactive power from the grid.

But what if we want to use an induction generator to supply the load without using an external source (e.g., grid)? A capacitor bank can be connected to the stator terminals to supply reactive power to the machine as well as the load.

When the rotor is rotated at sufficient speed, a small voltage is generated across the stator terminals due to residual magnetism. Due to this small generated voltage, capacitor current is generated, which provides more reactive power for magnetization.

Also, Read: What Is Geothermal Energy? | Alternative Energy Sources | Which Are Main Techniques Used to Exploit Geothermal Energy?

Induction Generator VS Synchronous Generator:

Now that you know how induction & synchronous generators work let’s get a little more specific about the difference between the two types of generators. In follow, you will learn more about the three most important differences between these two generators.

  • In synchronous generators, the waveforms of the voltage generated are synchronized and directly correspond to the speed of the rotor. The frequency of the output can be given as f = N * P / 120 Hz. where n is the rotor speed in rpm and p is the number of poles. In the case of induction generators, the output voltage frequency is controlled by the power system to which the induction generators are connected. If the induction generators supply a standalone load, the output frequency will be slightly lower (by 2 or 3%), calculated by the formula f = N * P / 120.
  • An alternating or synchronous generator requires a separate DC excitation system, whereas an induction generator takes reactive powers from the powers system for field excitations. If induction generators are meant to supply standalone loads, a capacitors bank must be connected to supply reactive power.
  • The construction of an induction generator is less complicated as it does not require a brush and slip ring arrangement. The brushes in the synchronous generator are required to supply DC voltage to the rotor for excitation.

Also, Read: What Is Solar Energy Used For? | What Is Good About Solar Energy? | Fun Facts About Solar Energy

Economic Comparison Between Induction Generators VS Synchronous Generators:

Here we come to the last part of these articles, where we will examine the difference between the two the generator in terms of economic efficiencies.

The investment cost of a power station equipped with asynchronous generators is low due to the lack of a DC excitations system & synchronous equipment. In addition, since there are no collector rings, brushes, and rotor excitation windings, maintenance and operation costs are low.

An asynchronous generator rotor has a hidden pole & a rotor winding similar to non-synchronous generators. Therefore, the general efficiencies are higher than that of synchronous generators with the same capacity and same speed.

Under the same water sources, asynchronous generators can generate more power. The above economic benefits of asynchronous generators will be partially offset by the required excitation or additionals synchronous capacity or additional capacitors of the asynchronous generator.

The amount of excitation required for an asynchronous generator is inversely proportional to the set speed of the motor—the higher the momentum, the lower the stimulus of the target value.

The area of ​​an Asynchronous Generator Power Plant is smaller than the area of ​​a Synchronous Generator Power Plant.

Also, Read: Types of Measuring Instruments

Conclusion:

In these articles, we tried to provide all the necessary information regarding the difference between an Induction Generator and vs. Synchronous Generator. We came up with the basic definitions of what are induction and synchronous generators, and then we moved on to the working principles of each of these generators.

In the next sections, we show some comparisons between these two generators to see how they differ. Finally, we examined the differences between the two generators in terms of economic efficiency. If you have any experience using either of these two generators and want to know more about them, we would be very happy to get your opinion in the comments on our website Linkquip.

Also, if you have any questions regarding these topics, you can sign up on our website and waits for our experts to answer your questions. I hope you enjoy reading this article.

Also, Read: Types of Motorcycle Engines | Various Motorcycle Engine Designs | How Does a Motorcycle Engine Work?


Frequently Asked Questions (FAQ)

What Is a Synchronous Generator?

A synchronous generator is a synchronous machine that converts mechanical power into AC electric power through the process of electromagnetic induction.

What Is a Permanent Magnet Synchronous Generator?

A permanent magnet synchronous generator is a generator in which the excitation field is generated by a permanent magnet instead of a coil. The term synchronous here refers to the rotor and the field rotating at the same speed because the field is generated through a permanent magnet mechanism mounted on the shaft, and a current is induced in the fixed armature.

What Are the Two Types of Synchronous Generators?

Types of Synchronous Machine

  • Hydro-generators: The generators which are driven through hydro-turbine are called hydro-generator.
  • Turbo-generators: These generators are driven through the steam turbines and convert the thermal energy of steam into electrical energy.

How Does a Synchronous Generator Work?

An alternator or synchronous generator works on the principle of electromagnetic induction, i.e., when the flux linking a conductor changes, an EMF is induced in the conductor. When the armature winding of the alternator is subjected to the rotating magnetic field, the voltage will be generated in the armature winding.

Working Principle of Synchronous Generator

The synchronous generator working principle is the same as a DC generator. It uses Faraday’s law of electromagnetic induction. This law states that when the flow of current is induced within the conductor in a magnetic field, then there will be a relative motion among the conductor as well as the magnetic field.

Permanent Magnet Synchronous Generator Working Principle

The working of the PMSG depends on the field produced by the permanent magnet attached to the rotor of the generator for the conversion of mechanical energy into electrical energy.

Induction Generator

An induction generator or asynchronous generator is a type of alternating current (AC) electrical generator that uses the principles of induction motors to produce electric power.

What Is Doubly Fed Induction Generator?

The doubly-fed induction generator (DFIG) system is a popular system in which the power electronic interface controls the rotor currents to achieve the variable speed necessary for maximum energy capture in variable winds.

Induction Generator VS Synchronous Generator

An alternating or synchronous generator requires a separate DC excitation system, whereas an induction generator takes reactive powers from the powers system for field excitations. If induction generators are meant to supply standalone loads, a capacitors bank must be connected to supply reactive power.

AC Synchronous Generator

Synchronous Alternating current (AC) generators are the predominant type of generator used for electrical power generation in the power engineering industry. Over 95% of all electrical power consumed today is produced from three-phase (3~) alternating current electric generators.


Leave a Comment

/* */